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Abstract—For many technical examples low-frequency ap-
proximations to the full set of the Maxwell equations are
applicable. Commonly, either the displacement current density or
the induced current density are neglected depending on a priori
knowledge about the dominating effects for a specific problem
setup. This leads to different subsets of the Maxwell equations
describing inductive-resistive or capacitive-resistive systems, re-
spectively. Here, a formulation combining both scenarios while
maintaining the quasistationary assumption is presented. The
formulation is applied to a simple test model consisting of
bounded massive conductor embedded in a dielectric insulation.

I. INTRODUCTION

In order to characterize, e.g., the behavior of electrical

machines thoroughly, the inclusion of capacitive effects in

addition to the inductive ones may become necessary. This sit-

uation occurs in particular for inverter-fed electrical machines,

where the machine windings are exposed to harmonics caused

by the inverter via the connecting cable. The common-mode

voltage caused by the inverter in combination with the dielec-

tric insulation of the machine windings gives rise to common-

mode currents a higher frequencies [1]. In order to predict

these effects, transmission-line models extracted from separate

2D finite element (FE) simulations regarding inductive and

capacitive phenomena, respectively, can be applied. Based

on the transmission-line parameters, also wave propagation

effects in electrical machines can be modeled [2]. Under

the assumption of time harmonic excitation functions for the

sources of the electromagnetic fields it is straightforward to

consider the full set of the Maxwell equations even in the low-

frequency regime. Depending on the actual formulation, an

instability of the related numerical models resulting from, e.g.,

a FE discretization is observed if the angular frequency ω tends

to zero. This can be resolved by explicitly enforcing Gauss’

law as shown in [3]. The singular system matrix resulting from

the stabilization can be solved efficiently using appropriate

preconditioners as, e.g., the one illustrated in [4].

Neglecting the contribution of the displacement current in

the full set of the Maxwell equations leads to the well-

known eddy-current formulation. It is valid for sufficiently low

frequency under certain restrictions on the material coefficients

as well as on the size of the problem domain. This procedure

introduces a modeling error which can be estimated as shown

in [5], [6]. Due to neglecting the displacement current in the

formulation, no electric energy is included in the eddy-current

model. This limits the range of application to inductive-

resistive systems. Here, an extension in terms of additionally

considering capacitive phenomena while remaining in the low-

frequency regime is presented.

II. LOW-FREQUENCY MODEL

Using the magnetic vector potential A and the electric

scalar potential φ the ungauged formulation of the Maxwell

equations in frequency domain reads

∇× (ν∇×A) + jωσA− ω2εA+

+(jωε+ σ)∇φ = Js

(1)

∇ · (ε∇φ) = ρ . (2)

Here, the magnetic flux density B and the electric field

strength E are expressed in terms of the potentials according

to B = ∇×A and E = −∇φ−jωA, respectively. Moreover,

ε, σ, ν = 1/µ and µ denote permittivity, electric conductivity,

reluctivity and permeability. On the righthandside of the above

equations, Js and ρ are the source current density and the

charge density.

The quasistationary limit is commonly defined based on the

relation of diameter d of the domain under consideration and

the smallest wavelength λmin to be expected, see, e.g., [7].

If d ≪ λ the effects of wave-propagation and radiation are

very small. As a consequence, the term −ω2εA in (1) can be

treated as a small perturbation to the other terms related to the

magnetic vector potential [8].

Using the continuity equation while substituting ρ accord-

ing to Gauss’ law while presuming a divergence-free source

current density leads to

jω∇·(σA)−ω2
∇·(εA)+jω∇·(ε∇φ)+∇·(σ∇φ) = 0 , (3)

which, in the following, is used in the formulation instead of

(2) together with (1). In the low-frequency approximation, i.e.,

ω < ωmax with ωmax = 2πc/λmin and c the speed of light,

the terms involving ω2 in (1) and (3) can be dropped accepting

the aforementioned modeling error.

Discretizing the modified versions of (1) and (3) by means

of lowest order FE edge functions wk and nodal shape

functions wi for A and φ, respectively, in combination with

Galerkin testing leads to the discrete system

(

Ke
ν + jωMe

σ jωLn,e
ε + Ln,e

σ
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σ )

T
jωKn

ε +Kn
σ

)(
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(
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0

)

. (4)
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Here, a and u are discrete vectors collecting the degrees of

freedom for A and φ while j contains the source current

distribution weighted by the test functions wℓ. The entries

of the sub-blocks are defined by

(Ke

ν)k,ℓ =

∫

Ω

(∇×we

k) · ν · (∇×we

ℓ) dV , (5)

(Me

σ)k,ℓ =

∫

Ω

we

k · σ ·we

ℓ dV , (6)

(

Kn

χ

)

i,j
=

∫

Ω

∇wn

i · χ · ∇wn

j dV , (7)

(

Ln,e
χ

)

i,ℓ
=

∫

Ω

∇wn

i · χ ·we

ℓ dV , (8)

whereas χ is replaced by either ε or σ and Ω denotes the

computational domain.

III. SYSTEM SOLUTION

As no gauging is applied, (4) does not possess a unique

solution in terms of the discrete values of the potentials.

However, if a numerical solution is found, the resulting fields

B and E derived from the potentials are unique. Therefore,

two different strategies are considered:

1) Solve the complex nonsymmetric system (4) using an

appropriate iterative solver.

2) Set the lower left matrix block in (4) to zero and solve

the resulting upper triangular block system.

As the righthandside of (4) is divergence-free, the iterative

solver (strategy 1) will preserve this property for all iterates

up to rounding errors. This effect can be seen as an implicit

gauging of the magnetic vector potential [9]. However, in

case of large differences in the values of the material coef-

ficients, the severe ill-conditioning might decrease the rate of

convergence of the iterative solver significantly. Therefore, an

adepted preconditioner should be applied. In case of strategy 2,

the solution of (4) can be separated. Given a non-vanishing

conductivity in the entire domain leads to a coloumb-like

gauge condition and as a consequence the resulting system

is regular. The lower right block is then identified as the

electroquasistatic system under voltage excitation. Its discrete

solution vector u provides a divergence free current excitation

for the magnetoquasistatic system in the upper left block of

(4). Therefore, established preconditioners can be used to solve

the two smaller systems of equations efficiently.

IV. TEST EXAMPLE

The low-frequency formulation developed above is applied

to the test model shown in Fig. 1. A massive conductor

(σ = 5 · 104 S/m, µr = 1000) is embedded in a block of

insulating material (εr = 10). In the surrounding domain as

well as for the inferior conductors an artificial conductivity

σa = 1 · 10−4 S/m is assumed. Due to the proximity of the

parallel sections of the conductor in combination with the

dielectric insulation, capacitive effects become relevant with

increasing frequency. In Fig. 2 the amplitude of the current

density is illustrated at the center cross-section of the structure.

Here, the skin effect dominates while the displacement current

is not completely neglected as it is the case for common eddy-

current models.
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Fig. 1. Example of a bounded massive conductor (diameter d = 2 cm)
embedded in a dielectric material (dimension l = 20 cm) under a voltage
excitation at both ends. The distance in the parallel section is 0.5 cm.

(a) (b)

Fig. 2. Qualitative plot of the amplitude of the current distribution at the
center cross-section of the massive conductors at (a) f = 10Hz and (b)
f = 1MHz.

V. CONCLUSION

Even in the low-frequency approximation of the Maxwell

equations it is possible to consider inductive, capacitive and

resistive effects in a single model to a certain extent. While

the method is used in frequency domain here, the benefit of

avoiding the modeling of wave propagation is more obvious in

time domain which is favorable, e.g., in presence of nonlinear

materials.
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